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Fig. 5. Diagonal elementsRii of optimal termination network under random
excitation as a function ofL=�0.

can be viewed as if the shorted line is part of the matching network
required to minimize crosstalk between the remaining lines. However,
on the other hand, if the shorted line is now excited, the termination
is bound to fail. This fact supports our proposal for a termination
network designed for random excitations.

The dependence of the total reflected power on the length of
the transmission section, when a random voltage is incident at the
generator, is shown in Fig. 4. The curve is periodic only if the
modal propagation constants are commensurate. As an example of the
dependence of the individual elements of the termination network on
the line length, Fig. 5 shows the required variation ofR11, R22, R33,
R44, R55, R66, andR77 of the asymmetric seven-line structure in
order to maintain optimum performance. It is interesting to note that
the load elementR66 is much more sensitive to the line length than
the other resistances. Since all the excitations are assumed having
equal probability, this effect is attributed to the fact that line number
six is one of the narrowest (0.35 mm) with closest coupling distance
(0.1 mm) to its immediate neighbors. Line number seven, although
the narrowest, is immediately coupled only to line number six, and
does not show as strong a sensitivity.

V. CONCLUSIONS

An analysis of the termination networks which lead to maximum
power delivery, or minimum total reflected voltage, is presented for
tightly coupled microstrip lines. Since an ideally matched matrix-
type termination network can not be constructed, a termination
network which minimizes the reflected power is designed instead.
Even when the individual entries of the reflection matrix[�V ]ij
are not small, it is possible to considerably reduce the reflected
power or voltage by adjusting the phases and magnitudes of the
individual reflected waves. Since the termination network which
insures minimum power reflection depends on the nature of the
incident excitation, the terminologyadaptive termination networkis
arguably more appropriate. For unknown excitation, which is usually
the case in practice, a termination network based on random excitation
is proposed.
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An FD–FD Formulation for the Analysis of the Optical
Axis Misalignment Effect on Propagation

Characteristics of Anisotropic
Dielectric Waveguides

Carlos Lêonidas da S. S. Sobrinho and Attı́lio J. Giarola

Abstract—A finite-difference frequency-domain (FD–FD) formulation is
developed to study the dispersion characteristics of anisotropic dielectric
waveguides with their optical axes not aligned with the coordinate-
system axes. In this analysis, the optical axes are initially assumed
to be aligned with the coordinate-system axes such that the electric-
permittivity and magnetic-permeability tensors are diagonal. The optical
axes of the anisotropic dielectric are then rotated an angle� (or �) with
respect to the coordinate-system axes. While the FD–FD formulation
developed is general, it is applied here only to waveguides containing
uniaxial anisotropic dielectrics. The results show that accurate optical-axis
orientation is important in the design of dielectric waveguides.

Index Terms—Optical axial misalignment.

I. INTRODUCTION

Various methods have been used in the analysis of the propagation
characteristics of dielectric waveguides, with applications in inte-
grated circuits in the millimeter and optical frequency bands. Among
these methods, the following are of interest:

1) the finite-difference frequency-domain (FD–FD) formulation
[1], [2];

2) the two-dimensional (2-D) finite-difference time-domain (2-D
FDTD) method [3];

3) the finite-element method (FEM) [4];
4) the transmission-line method (TLM) [5].

While the FD–FD, FEM, and TLM in the frequency-domain
methods are equivalent, this is not true for the FD–FD and 2-D
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Fig. 1. Waveguide structure.

FDTD methods. There are some basic differences, such as for the
same computation time, the 2-D FDTD method allows a more precise
definition of the field distribution, particularly at the interfaces. How-
ever, for the analysis of waveguides containing dispersion materials,
contrary to the FD–FD method, the 2-D FDTD method does not allow
the calculation of the attenuation constant with adequate precision.
Considering this fact and the mathematical development simplicity of
its implementation, we have chosen to develop a formulation using
the FD–FD method that is an extension of [2].

II. THEORY

The formulation developed in this paper is applicable to the
analysis of the propagation characteristics of cylindrical waveguides
with arbitrary cross section, consisting of general biaxial anisotropic
lossy dielectrics, with their optical axes not necessarily aligned with
the coordinate axes.

Fig. 1 shows a cross section of the structure considered here. Media
2 and 3 are channel waveguides integrated in a substrate denominated
as Medium 4. The envelope is Medium 1. In the general formulation
that was developed, all four media are characterized by the following
dielectric permittivity and magnetic permeability tensors:

" = "0

"xx "xy 0

"yx "yy 0

0 0 "zz

and� = �0

�xx �xy 0

�yx �yy 0

0 0 �zz

(1)

respectively, where"0 and �0 are the free-space permittivity and
permeability, respectively. They result from a rotation in thez-axis of
an angle� with respect to thex-axis, for the dielectric permittivity and
an angle� with respect to thex-axis for the magnetic permeability,
from the aligned axes position
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where� = � when� = " and� = � when� = �. The angles� and�
are shown in Fig. 1. The fields are assumed to have a harmonic time
dependence given byexp(j!t) and propagating along thez-direction
(see Fig. 1), with az-dependence of the formexp(�
zz), where!
is the angular frequency and
z is the propagation constant.

For the bi-dimensional problem, the vector wave equation that de-
scribes the wave propagation, is expressed in terms of the transverse
components of the magnetic field in the waveguide cross section
(Fig. 1). As a result, two coupled partial differential equations are
obtained and written as follows:
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Fig. 2. Graded mesh with five and nine points.
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A. Numerical Solution of Coupled Equations (3a)

To develop the finite-difference method, a graded mesh of points
is drawn on the waveguide cross section, such that a general point
Pi is distant from its neighbors to east, west, south, and north bye,
w, s, andn, respectively, as shown in Fig. 2. To obtain theHx and
Hy components of the magnetic field in a positionPi, the coupled
equations (3a) are applied to each region 1–4 of the nine points
graded mesh of Fig. 2. The first- and second-order partial derivatives
of the transverse components of the magnetic fieldHx andHy are
obtained from a truncated Taylor series for the respective mesh points
(Fig. 2). As a result, eight equations are obtained. In the interfaces
between the four regions of the nine-point graded mesh of Fig. 2, the
boundary condition that requires continuity of longitudinal electric
Ez and magneticHz field components is imposed [2].

The solution of the wave equation may, therefore, be written for
a point P , as
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The coefficients that appear in (4a) and (4b) are functions of
geometry and electromagnetic parameters of the structure under
analysis.
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Fig. 3. Dispersion characteristics of first fourEx

pq
andEy

pq modes for the
isolated waveguide.

B. Limitation of the Discretization Region

The graded mesh of points is assumed to haveN points. Therefore,
there areN unknownsHyp andN unknownsHxp. Using (4a) and
(4b) for each mesh point,2N equations are obtained. Therefore, the
number of unknowns is equal to the number of equations. Obviously,
to solve the problem,N has to be a finite number. This is done by
confining the structure’s cross section within electric and/or magnetic
walls. The use of the present formulation in open structures is possible
when the fields are concentrated near the center of the cross section
(Media 2 and 3 of Fig. 1) due to the high dielectric permittivity of
these media when compared with the other media (Media 1 and 4 of
Fig. 1). In these situations, the influence of the walls on the results
may be controlled [1], [2].

As a result, (4a) and (4b) may be applied to each pointP of the
graded mesh of points using the proper boundary conditions at the
electric and/or magnetic walls. Therefore, a system of homogeneous
and linear equations is obtained that may be written as a conventional
eigenvalue problem [1]

[(A)� �(U)] (X) = 0 (5)

where� = �
2z , (U) is the unit matrix,(X) is a column matrix
that contains the components of the magnetic fieldHx andHy, and
(A) is a square matrix with constant coefficients. The values of the
attenuation constant�z and phase constant�z of each propagation
mode are obtained from each eigenvalue by means of

� = �(�z + j �z)
2
: (6)

The eigenvalues� and the eigenvectors(X) were obtained using the
Eispack program.

III. RESULTS

The developed formulation is applied to the analysis of the
dispersion characteristics of the structure considered in Fig. 1. In this
analysis, the magnetic permeability of all four media are assumed to
be equal to that of free-space� = �0. Media 1 and 4 are assumed to
be isotropic, with"="0 = 2:05, and Media 2 and 3 are assumed to be
uniaxial anisotropic dielectrics, with"1 = "3 = 2:19 and"2 = 2:31

(2). The free-space wavenumber is given byk0 = !
p
�0"0 and the

aspect ratio of each waveguide is(a=b) = 2.
Fig. 3 shows the dispersion characteristics of the first fourEx

pq

andEy

pq modes, for the case of an isolated waveguide(D � a). An
angle� = 90

� was used. Because of the structure’s symmetry, only
one fourth of its cross section was sufficient for the present analysis.
A 13� 13 graded mesh of points was used. The results shown here
were compared with those obtained using a vector FEM and a good
agreement was observed.

Fig. 4. Effective dielectric constant(�z=k0)2 of Ex

11
andEy

11
modes as a

function of � for the waveguide of Fig. 3.

Fig. 5. Effective dielectric constant(�z=k0)2 of even and oddEx

11
and

E
y

11
modes as a function of�2 for the coupled waveguides of Fig. 1.

The dispersion characteristics for the isolated waveguide examined
in Fig. 3 are shown in Fig. 4, as a function of the angle�, for the
Ex

11 andEy

11
modes and for three different normalized frequencies

k0b = 5:0, 7.0, and 10.0. Note that the effective dielectric constant
(�z=k0)

2 versus� is very smooth.
In Fig. 5, coupled dielectric waveguides are considered. The angle

�3 for Medium 3 is kept constant and equal to 90�, while the angle
�2 for Medium 2 is varied. A graded mesh of 13 points by 49 points
was used in this case and advantage was taken of the structure’s
symmetry with respect to thex-axis. Curves for(�z=k0)2 versus�2
for the even and oddEx

11 andEy

11
modes are shown fork0b = 10:0.

Note that while(�z=k0)2 varies with�2, the differences of(�z=k0)2

between even and odd modes is practically independent of�2.

IV. CONCLUSIONS

An FD–FD method was formulated for the analysis of cylindrical
biaxial anisotropic dielectric waveguides with their optical axes
rotated with respect to the coordinate system axes.

The formulation was developed in terms of the transverse
magnetic-field components such that the problem was transformed
into a conventional eigenvalue problem, with the elimination of the
spurious modes by the implicit inclusion of the divergence of the
magnetic field equal to zero.

Various results for the effective dielectric constant were presented
for isolated and coupled waveguides. In all cases considered here,
particular attention was taken to the effect caused by the rotation
of the material optical axes in a plane transverse to the direction of
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propagation, with the indication that it cannot be ignored. For the case
of coupled waveguides, it was noted that the coupling is practically
unaffected when the optical axes of one of the waveguides are rotated
with respect to the coordinate-system axes.
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Scattering by an Infinite Elliptic Dielectric Cylinder
Coating Eccentrically a Circular Metallic

or Dielectric Cylinder

Stylianos P. Savaidis and John A. Roumeliotis

Abstract—In this paper, the scattering of a plane electromagnetic wave
by an infinite elliptic dielectric cylinder, coating eccentrically a circular
metallic or dielectric inner cylinder, is treated. The electromagnetic field
is expressed in terms of both circular and elliptical–cylindrical wave
functions, which are connected with one another by well-known expansion
formulas. Translational addition theorems for circular cylindrical wave
functions are also used. If the solution is specialized to small values
of h = k2c=2, where k2 is the wavenumber of the elliptic dielectric
cylinder and c its interfocal distance, semianalytical expressions of the
form S(h) = S(0)[1 + gh2 + O(h4)] are obtained for the scattered
field and the various scattering cross sections of this configuration. The
coefficientsg are independent ofh. Both polarizations are considered for
normal incidence. Graphical results for the scattering cross sections are
given for various values of the parameters.

Index Terms—Eccentric elliptical–circular cylinders, scattering.

I. INTRODUCTION

Scattering from composite bodies is often used for detecting their
internal structure. Analytical solution of such problems is severely
limited by the shape of boundaries. For complicated geometries,
various numerical methods can be used.

Scattering from a dielectric elliptic cylinder coated with another
nonconfocal dielectric one, or from two parallel dielectric elliptic
cylinders, is examined in [1] and [2], respectively.

In this paper, the scattering of an electromagnetic plane wave by
an infinite elliptic dielectric cylinder containing an off-axis metallic
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or dielectric circular inner cylinder, is considered. The geometry
of the scatterer, shown in Fig. 1, is a perturbation of the eccentric
circular one, with radiiR1 andR2. All materials are lossless. Both
polarizations are considered for normal incidence.

Using translational addition theorems for circular cylindrical wave
functions [3] and expansion formulas between circular and elliptical
(Mathieu) wave functions [3], [4], we conclude (after the satisfac-
tion of the boundary conditions and some manipulation) with two
infinite sets of linear nonhomogeneous equations for the expansion
coefficients of the electromagnetic field inside the elliptic dielectric
cylinder.

For general values ofh = k2c=2 these sets can be only solved
numerically by truncation, but forh � 1, a semianalytical solution
is possible. After very lengthy and laborious, but straightforward
calculations, we obtain expressions of the formS(h) = S(0)[1 +

gh2+O(h4)] for the scattered field and the scattering cross sections.
The coefficientsg are independent ofh, while S(0) corresponds to
the eccentric circular problem. The main advantage is that these ex-
pressions are valid for each smallh, freeof Mathieu functions, while
all purely numerical techniques require repetition of the calculation
for each differenth, a very complicated task due to these functions.

This advantage distinguishes this paper from [1], [5], which
contribute more general geometries. By using the solutions of [1]
and [5] to obtain our numerical results, one should repeat the very
complicated steps containing the calculation of the various Mathieu
functions for each differenth.

Apart from its mathematical interest, the elliptical–circular com-
bination of this problem may enhance or decrease the various
scattering cross sections, as compared to those for the eccentric
circular geometry.

The solution of this problem is much more complex and lengthy
than that in the corresponding coaxial one [6] due to the eccentricity,
the presence of a dielectric inner cylinder in one case here, and the
use of different permeabilities for the various regions in this paper.
In [6], the wavenumbers in the elliptic dielectric cylinder and the
surrounding medium were also nearly equal (h �= h2 there), while
here they are different.

II. M ETALLIC INNER CYLINDER

A. E-Wave Polarization

1) Calculation of the Field: We begin with a metallic inner cylin-
der and theE-wave polarization. The incident plane wave normally
impinging on thez-axis has the form [3], [4]

E
inc

z =
p
8�

1

m=0

j
�m

Sem(h3; cos  )

M e

m
(h3)

� Sem(h3; cos �)Jem(h3; cosh �)

+
Som(h3; cos  )

Mo

m
(h3)

Som(h3; cos �)

� Jom(h3; cosh �) ; h3=
k3c

2
(1)

with �; � the transverse elliptical–cylindrical coordinates with respect
to xOy; Jem(Jom) the even (odd) radial Mathieu functions of the
first kind, andSem(Som) the even (odd) angular Mathieu functions.
The normalization constantsMe(o)

m are given in [4]. The angle
 defines the direction of incidence with respect tox. The time
dependenceexp (j!t) is suppressed throughout.
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